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Centromere proteins and chromosome inheritance: a

complex affair

Kenneth W Dobie*, Kumar L Harit, Keith A Maggertf and Gary H Karpen$

Centromeres and the associated kinetochores are involved in
essential aspects of chromosome transmission. Recent
advances have included the identification and understanding of
proteins that have a pivotal role in centromere structure,
kinetochore formation, and the coordination of chromosome
inheritance with the cell cycle in several organisms. A picture is
beginning to emerge of the centromere—kinetechore as a
complex and dynamic structure with conservation of function at
the protein level across diverse species.
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Abbreviations

APC anaphase-promoting complex

BUB budding uninhibited by benzimidazole

CENP centromere protein

CPC checkpoint protein complex

CREST calcinosis, Raynaud's phenomenon, esophageal

dismotility, sclerodactyly, telangiectasia

INCENP inner centromere protein
MAD mitotic arrest-deficient
M—A metaphase to anaphase
MT microtubule
Introduction

Faithful chromosome transmission during mitosis and
meiosis is essential for an organism’s normal development
and for the inheritance of genetic traits. Aberrant chro-
mosome transmission results in aneuploidy, classically
defined as deviations from the normal chromosome com-
plement [1]. Ancuploidy has catastrophic consequences
for public health. In humans, 45% of spontaneous abor-
tions and 7% of all conceptions exhibit aneuploidy [2],
and aneuploidy causes common birth defects (e.g. Down,
Klinefelter and ‘lurner syndromes). Aneuploidy is also
tightly correlated with almost all types of cancer: there
arc >84,000 documented cases of abnormal karyotypes
associated with human neoplastic disorders [3]. Despite
the high frequency and importance of aneuploidy, we are
only beginning to understand the causes of aberrant chro-
mosome transmission.

The centromere is essential for the passage of chromo-
somes to daughter cells during cell division. It was defined
OVer a century ago as a cytogenctic entity, the primary chro-

mosome constriction that serves as the site of spindle
attachment to the chromosome. More detailed analyses
have demonstrated that the centromere contains cen-
tromeric DNA associated with an exquisite and dramatic
proteinaceous structure, the kinetochore, which in turn
interacts with the spindle microtubules (MTs). In most
cukaryotes there must be one (and only one) centromere
per chromosome; this stable structure is comprised of ¢7s-
acting DNA sequences and srans-acting proteins. Several
recent reviews (¢.g. [4,5]) discuss the surprising plasticity of
the as-acting elements required for centromere function in
different species. "I’here is enormous diversity in cen-
tromere DNA composition both between and within
species; kinetochores can fail to form despite the presence
of centromeric DNA, and non-centromeric DNA appears
capable of forming active kinctochores. The paradoxical
behaviors of centromeric DNA — stability and plasticity —
led to the idea that centromere structure and function may
be dictated by an epigenetic, self-propagating mechanism
that requires imprinting of DNA or #ans-acting protein
constituents [6-8].

The trans-acting centromere proteins can be divided into
two broad classes. First, there are architectural proteins that
contribute to the structure of the centromere and centromer-
ic chromatin; these proteins are responsible for kinetochore
formation and may regulate other functions exhibited by the
broader centromeric region (i.e. condensation and sister chro-
matid cohesion). Second, there are kinetochore proteins that
function to promote MT" capture, chromosome congression,
resolution of sister chromatid cohesion, movement of sister
chromatids to opposite poles, and coordinating chromosome
segregation with the cell cycle.

Here, we review recent advances in our understanding of
how centromere proteins facilitate and coordinate chro-
mosome transmission through mitosis. Three general
themes are presented. First, the diversity in primary
DNA sequence is accompanicd by poor homology in pri-
mary DNA-binding proteins across specics but, as these
structural elements segue into the functional compo-
nents (i.c. motor and checkpoint proteins), a high degree
of sequence and functional conservation becomes evi-
dent.  Sccond, chromosome transmission and
coordination with the cell cycle is a complicated and
dynamic process: there are many transient protein—cen-
tromere interactions and a division of labor is utilized
within protein networks to accomplish the broad range of
functions undertaken by the centromere. Third, kineto-
chores are central for the assembly of checkpoint protein
complexcs (here abbreviated as CPCs) that interact with
the anaphase-promoting complex (APC) to coordinate
chromosome transmission with the cell cycle.



Centromere structural proteins

In Saccharomyces cerevisiae, unlike higher eukaryotes, the cen-
tromere contains specific primary DNA sequences that are
conserved among all 17 chromosomes [6]. Many structural
proteins were identified from mutational analyses and cen-
tromere DNA binding assays and the functions and
interactions of S. cerevisiue centromere proteins are the best
characterized at this time (Table 1). Recent elegant studies
[9,10,11°*] have revealed that the CBF3 complex (p110, p64,
p58, and p23), Csedp (a histone H3 variant similar to mam-
malian CENP-A, sce below), Mif2p (similar to mammalian
CENP-C, see below) and Cbf1p develop the architecture of
the §. cerevisiae centromere by interacting with the DNA.
Future analysis will focus on the three-dimensional struc-
tures produced by these DNA-protein interactions.

If, in higher eukaryotes, primary DNA sequence is neither
necessary nor sufficient for centromere function (reviewed
in [4,5,7,8,12]), then how is the spindle-attachment site
defined? This question can be separated into two parts.
First, how is ‘centromere identity” determined; how is one
region ‘marked’ as the site where kinetochore formation
will stably occur through generations? Current hypotheses
postulate that higher-order structure of the DNA, cen-
tromere-specific chromatin protcins (e.g. CENP-A, see
below), protein modifications (e.g. histone acetylation
[13°*]), replication timing [14] or some combination of
these factors may determine centromere identity. Sccond,
how is the primary kinetochore layer built on top of the
‘marked’ DNA? Exactly which proteins build the kineto-
chore is unclear and because centromeric DNA differs
across and even within species, the marking or structural
proteins that bind this DNA may also be different.

Four candidates for structural proteins in mammals —
CENP-A, CENP-B, CENP-C and CENP-G — were
fortuitously identified using autoimmune antisera [15,16°].
All arc present at the centromere throughout the cell cycle
and could mark the site through divisions or they could
promotc kinetochore formation. What roles might these
proteins play at the centromere? CENP-A, a histone H3
variant, may be an epigenetic mark for the centromere
[17,18]. CENP-B binds centromerc-associated DNA 77
vitro and promotes nucleosome positioning [19] but local-
ization data and recent mutational analyses indicate that
CENP-B is not absolutely required for centromere func-
tion [15,20,21]. Disruption of thc CENP-C gene is a lethal
event [22°] associated with gross mitotic abnormalities
[22°,23,24] and CENP-C may function both in creating the
primary kinetochore layer and in monitoring its proper for-
mation [23-27]. CENDP-G is the newest member of the
constitutive centromere proteins and, although its role is
undefined, one attractive possibility is that it plays a role
similar to CENP-B. Is CENP-A the mark for the cen-
tromere? What proteins, if any, compensate for the loss of
CENP-B? [s CENP-C a signaling molecule and how does
it perform its functions? The mammalian centromere pro-
tein story is not complete but the tools to answer these

Centromere proteins and chromosome inheritance Dobie et al. 207

questions now exist. For example, targeted mislocalization
of CENP-A will address whether this protein can ‘mark’
the site for centromere formation. In addition, the further
characterization of CENP-G and the identification of the
structural centromere proteins in CENP-B knockout mice
should help determine how the kinetochore is built.

Although several kinetochore proteins have been identified
in 8. cerevisiue and mammals, our knowledge of these pro-
teins in  Schizosaccharomyces  pombe and Drosophila
melanogaster is less satisfying. A number of §. pombe cen-
tromere-associated proteins have been identified in screens
on the basis of minichromosome loss and gene silencing
[28,29] but their exact roles in determining centromere
identity or kinetochore formation are unknown (Table 1).
'lo date there is only one candidate for a structural cen-
tromere protein in D. melanogaster. Can the S. cerevisiae and
mammalian proteins be used to identify centromere pro-
teins in S. pombe, D. melanogaster and other species?
Homologs of some mammalian constitutive centromere
proteins — CENP-A, CENDP-B, CENP-C, see above — do
exist in §. cerevisiae and 8. pombe, but weak homology makes
them difficult to identify via sequence alone. Thus, in
many cases, proteins that are structurally non-homologous
may be functionally analogous. Given the recent advances
in our understanding of centromere structure and function
in 8. pombe and D. melanogaster [13°*,30], both systems
would benefit greatly from newly designed screens and bio-
chemical approaches to identify centromere proteins.

What other proteins might help define the centromere?
Correlative data suggest that some proteins containing chromod-
omains may be involved in assembling the kinetochore [31]. They
are associated with centric heterochromatin in a variety of organ-
1sms (8. pombe, Swiop [32]; D. melanogaster, HP1 [33]; Mus musculus,
M31 and M33 [34,35]) and mutational analyses link them to chro-
mosome inheritance (S. pombe, Swibp and Cldp [29,32,36]; D.
melanogaster, HP1 [37]). "I'he possibility that chromodomain pro-
teins build the primary kinctochore layer is particularly intriguing;
they have been implicated in the cellular memory of epigenetic
states [13°*,31] and could perhaps mark the site for centromere for-
mation through generations. Whether or not these proteins are
involved in defining the centromere is unclear, and other factors
must be involved in at least some species (e.g, no chromodomain
proteins have been found at the §. arevisiae centromere). Overall,
itappears that a wide range of DNA-binding proteins create a cen-
tromere structure upon which a conserved layer of motor and
signaling proteins is then built.

Microtubule capture and kinetochore
congression

As the chromosomes condense at the onset of mitosis, the
proteinaceous kinetochore nucleates at the site of the cen-
tomere. Kintechores initially interact with MTs laterally
and rapidly move polewards, and remain in the proximity
of a pole until bipolar attachments are made via end-on
MT-kinetochore connections. Once bipolar spindles are
established, kinetochores move platewards — congressing



208 Chromosomes and expression mechanism

Table 1

Proteins with a role in centromere function

Function

S. cerevisiae? S. pombeb  D. melanogaster X. laevisd M. musculus®  H. sapiens' Reference
Structure Csedp, Cbflp Swibp PROD - mCENP-A} hCENP-A a[6,9,10,11°*]
p110(Ndc10p) mCENP-B? hCENP-B ®[101]
p64(Cep3p) mCENP-C# hCENP-C {102}
p58(Ctf13p) €[20,21,22%,103]
p23(Skp1p)* 115,16°,17]
Mif2p
Sister chromatid Scc1p/Mced1p* Mis6p Mei-S332 SMCs* a[39,98]
cohesion SMCs* ORD b[104]
¢[105,106]
9[39]
€[107]
Microtubule capture Cbfsp*(?) Chplp dZW10 xKCM1 #*MCAK hCENP-E a[108]
and congression Swibp dDynein xCENP-E CLIP-170 b[55,101]
dDynactin hDynein c[46°,109]
& ROD hDynactin d[53+,110]
— T — e[107]
f[45,49,51,52,
54,72°]
M—A checkpoint scBUB1,scBUB2  spBUBH1 dFZY(?) xMAD1 mBUB1 hBUB1, hBUBR18  2[58,64,68,
scBUB3, scMAD1  spMAD1* dFZR(?) xMAD2 Tsg24 hBUBS3, hMAD1,2 70,73}
:E % scMAD2, scMAD3  spMAD2 dBUB1 xFZY(?) p55CDC/ b[65°,76°,85°]
—30 e ! Cdc20p, Cdc27p Slp1p dBUB3 hCDC20 <[80,82,126]
ZAy hZW10, ERK d[81,85]
3F3/2 epitope €[66°,67°,93°]
f[63+,67¢,72¢,74,
78°%*,84° 86°,88,
109,111]
Resolution and segregation Pds1p Cut1p(?) Pimples(?) - #MCAK hCENP-E 2[98,112,113]
- —p Espip Cut2p(?) Three rows(?) b[99]
— “ Aselp(?) dZW10, dDynein, c[46°,114,115]
— &1 e — Clb2p dDynactin, ROD e[107]
- e f[72°]
-
Unknown NSP1p/ Sth1p(?) Rik1p, Clrap HP1(?) - M31 CENP-D a[116,117]
Spt4p(?)  Abp1p/Cbpip POLO M33 CENP-F b[36,101,118,119]
Cbh1p MODULO(?) lkaros CENP-G €[37,120,121]
Helios PcG(?) e[34,35,122,123]

15,16°,124,125]

We have compiled proteins with centromere function in S. cerevisiae,

S. pombe, D. melanogaster, X. laevis, M. musculus and H. sapiens. The
black circles in each function panel highlight the class of proteins
represented in the rows. The ‘Unknown’ row contains proteins that may
have a centromere function but the precise role is ambiguous. Proteins
marked ‘(?)" have not been precisely localized to the kinetochore. We
have generally cited recent references that are discussed in the text;
original references can be found within the papers we cite. Proteins with
older citations or unknown functions are generally not discussed in the
text. The resolution of cytology in S. cerevisiae and S. pombe is generally
insufficient to localize the checkpoint proteins to centromeres but genetic
studies demonstrate that they have centromere function (see text). *The
function of these proteins is not limited to the centromere. Other proteins
listed in the table may have functions that are not limited to the
centromere although the precise non-centromeric role is unclear.

the entire genome at the spindle equator — and await
anaphase [38°*]. Concomitant with this arrangement is the
requirement for polar ejection forces (i.e. ‘polar wind’) and

For example, some checkpoint proteins also localize to the spindle poles
in mammalian cells [78¢*,86°]. The spMAD1 protein has not been
characterized but its presence is implied by the gene,
GenBank/EMBL/DDBJ accession no. Z95620 [85°]. The M. musculus
CENP proteins have yet to be characterized but their presence is inferred
from sequence homology. thBUBR1 and hMAD3 may be the same
protein {67¢]. #MCAK in CHO cells. Although the table presents what is
currently known, it also illustrates gaps in our knowledge about each
function in each organism. Abbreviations: BUB, budding uninhibited by
benzimidazole; cdc, cell division cycle; CENP, centromere protein;

CLIP, cytoplasmic linker protein; ERK, extracellular signal-regulated kinase
(also known as MAP kinase); HP1, heterochromatin protein 1;

KCM, kinesin central motor; MAD, mitotic arrest deficient; ORD,
orientaion disrupter; PcG, Polycomb group; PROD, proliferation disrupter;
ROD, rough deal; SMC, structural maintenance of chromosome.

the tight apposition of sister chromatids via sister chro-
matid cohesion (see recent reviews [39-41] and Biggins
and Murray, this issuc [pp 230-236]).



Prometaphase and anaphase chromosome movements arc
mediatcd by intcractions with M'Ts the minus-ends of
which lie at the poles. MTS interact with bulk chromatin
through DNA-binding proteins (chromokinesins) that are
thought to be responsible for generating the polar wind,
which acts largely on chromosome arms. In addition, a sub-
set of M'ls interact with the kinetochore complex. After a
kinetochore coalesces during prometaphase, it must capture
and bundle kinctochore MT5, direct poleward and plate-
ward movement (congression), and ultimately gencrate the
poleward forces that partition chromosomes to daughter
nuclei. 'T'hese activities seem quite independent, yet all can
be explained by the actions of M'T-binding motor proteins,
factors known to associate with these motors, and MT
asscmbly and disassembly. Recent work has suggested that
the first steps of kinetochore—M'I" association are dependent
on non-movement properties of molecular motors.

Mortors and associated factors are found at the maturing
kinetochore, in regions that arc seen to intcract with grow-
ing spindle MTs. Dynein, a plus-end-dirccted molecular
motor, is found at the outermost layer of the kinetochore,
the fibrous corona [42,43]. The localization of dynein over-
laps with that of dynactin, a multisubunit complex thought
to mediatc the dyncin—cargo interaction [44,45]. The pres-
ence of these factors at the site of M'I' contact is
dependent on ZW10 and ROD [46°], which have been
localized to the outer plate. These two proteins interact
genetically and physically (R Karess, M Goldberg, person-
al communication), and may serve as a scaffold upon which
dyncin and dynactin rest [46°]. However, the dynamic MT
‘strcaming’ of ZW10 throughout spindle assembly [47]
allows for functions of ZW10 beyond that of kinctochore
motor localization. The observation that ZW/70 mutants
have no chromosome phenotype until anaphase [48] sug-
gests that the activities of dynein and dynactin at the early
kinetochore are redundant with other factors. At least two
other plus-end-directed molecular motors, MCAK
(XKCMT in Xenopus laevis) and CENP-E [49-51], arc pre-
sent at the kinetochore. The role of CENP-E, recently
reviewed by Rieder and Salmon [38°°], is a motor protein
required for chromosome congression and segregation.
Cells immunodepleted for CENP-E fail to assemble bipo-
lar metaphase-aligned chromosomes, suggesting that
CENP-E activity plays a role at prometaphase [52°,53°]. It
is expected that these motor activities — CENP-E,
MCAK/XKCMI, dynein — are redundant or overlapping
and that any one is dispensable without losing all the chro-
mosome movements during normal mitosis [52°,53°].

MT binding to motors in the prometaphase kinetochore is
facilitated by the presence of M'1-associated fidelity factors.
CLIP-170, a vertebrate factor, is located at the kinetochore
until metaphase. Originally characterized as an MT-endo-
cytic vesicle interaction factor, its overexpression leads to a
delay in anaphase onset [54]. CLIP-170 is proposed to act
as a fidelity factor, increasing the binding of MTs to the
motors in the corona and outer plate of the kinetochore. A
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similar phenomenon may be occurring in S. pomébe. Chplp,
an S. pombe chromodomain-containing protein, interacts
genetically and pharmacologically with tubulin [55] and
chpl mutants display a delay in anaphase onset. ¢2p7 muta-
tions and CLIP-170 overexpression may exert their effects
at the prometaphase kinetochore by interfering with the
fidelity of M’ capture but it is as yet unclear if the defects
are caused by either direct or indirect interactions.

MI*based motors in combination with motor-cargo fidelity
factors appear to be responsible for initial MT binding and
kinetochore-mediated congression. Although the initial
binding involves factors like dynactin, CIL.IP-170, and
Chplp, epitopes for these proteins arc lost in fixed
mctaphase figures, suggesting that these may be dispens-
able once bipolar end-on binding of MIs to the
kinetochores is cstablished [46°,54]. T'he prometaphase
role for motor proteins during M'Il" capture has been inter-
preted as stabilization of the M'T" end, rather than catalytic
movement [38°%]. "T'his hypothesis has received support
from the recent observation that the ratio of motor proteins
(Kar3p:Kip2p in §. cerevisiae) at the spindle poles affects the
number of polymerized M'Ts [56], suggesting that motors
not only move along M'Is but also affecce MT dynamics.

Recent results and previous analyses lead to a working
model for the role of motors and other factors in Ml" capture
and congression. A growing spindle M'I* encounters a kine-
tochore fibrous corona, rich in MT-binding motors (e.g.
dynein and CENP-E). The motors bind polymerized
GDP-tubulin and move the kinetochore in a retrograde
direction until they approach the pole, where they are per-
haps kept at bay by polar wind. The monopolar kinetochore
stalls until it binds polymerized G'TP-tubulin [57] from the
other pole, which acts as a stabilizing cnd-binding protein.
The frequency and strength of interactions between the
motors and the polar M5 are affected by the presence of
fidelity and crosslinking factors (e.g. CLLIP-170, Chplp, and
dynactin). Once the initial interaction with the M'T ends are
made, more stable interactions between the e¢nds and outer-
plate motor proteins (e.g. dynein, MCAK, and CENP-E) are
made. The factors involved in initial binding may be either
lost or dispensable, while remaining kinetochore motors and
the tension created by the polar wind carry the chromo-
somes to proper metaphase alignment. Whether congression
occurs either as a result of motor-based movement or a prod-
uct of MT growth and decay is a contested issue. Once
congressed at the plate, the kinetochores signal the cell-
cycle  machinery resident  attachment and/or
tension-sensing mechanisms and await the signal for
anaphase progression (see below).

via

This model suggests that specific structures are present
within the M'I:free and MT-bound kinetochores.
Complexes could vary in membership between
prometaphase and metaphase, and between M'T-free and
M'I*bound kinetochores. As many of these proteins may
be redundant or supported by similar activities (e.g. the
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Kinetochore proteins and the M—A
checkpoint. A model is presented that can
account for the transition from the ‘wait
anaphase’ (STOP) to the ‘go anaphase'
(GO response after the last kinetochore
has attached to MTs. Open shapes represent
inactive states and shaded shapes represent
active states. Unattached kinetochores act as
centers for the assembly of CPCs from
prometaphase through to metaphase. CPCs
comprise targeting proteins like MAD1 or
BUBS (larger rectangle) that are required for
the localization of other MAD and BUB
proteins (square boxes) and effector proteins
like Cdc20p/Slp1p/p55CDC (smaller
rectangle) to unattached kinetochores.
Further, components of the APC (Tsg24 and
Cdc27p) have been localized to kinetochores
(elipse). CPCs are formed while there are
unattached kinetochores, resulting in an
inactive APC and a halt in the M—A transition.
A single unattached kinetochore is capable of
completely inhibiting the APC. CPCs would
no longer be created once all the kinetchores
become attached to MTs. This may be due to
a kinase-dependent signal from MT
attachment/tension-sensing protein
complexes. This results in an active APC that
is free to induce progression into anaphase. It
is likely that this is an over simplistic view of
M—A control and that other feedback loops
are involved. Nonetheless, with the enormous
progress already made, the foundations are
now in place to build a deeper understanding
of these processes.

Active APC

overlap of CENP-E and dynein and MCAK), experiments
investigating necessity and sufficiency are difficult to
interpret. Ongoing immuno-electron-microscopy studies
and immunodepletion or mutation analyses will contribute
to our understanding of which factors are present and nec-
essary for faithful MT—kinetochore interaction.

Kinetochores and the metaphase—anaphase
checkpoint .
MT-kinetochore associations are stochastic. Cells possess
a metaphaSe to anaphase (M—A) or spindle checkpoint
that monitors the attachment of M'ls to kinetochores and
alignment of chromosomes at the metaphase plate. "T'he
checkpoint guards against ancuploidy by delaying progress
into anaphase (chromosome segregation) until all the kine-
tochores are attached to M'Ts and proper chromosome

congression has occurred. The signal that everything is
ready for M—A progression involves communication
between checkpoint protein complexes (CPCs) and the
anaphase-promoting complex (APC). The checkpoint can
be dramatically demonstrated in yeast by treating dividing
cells with drugs that cause depolymerization of M'Ts and
M—A arrest. Hoyt ez a/. [58] and 1.i and Murray [59] uti-
lized this property to screen for genes in 8. cerevisiae cthat
prevent arrest. These screens were groundbreaking
because they uncovered the seBURI, 2, and 3 (budding
uninhibited by benzimidazole) and seMADI, 2, and 3
(mitotic-arrest-deficient) genes. Remarkable live-time,
micromanipulation and laser-ablation studies later demon-
strated that checkpoint function resides at kinetochores
and that a single unattached kinetochore can delay pro-
gression into anaphase [60-62].



The BUB and MAD checkpoint proteins appear
functionally conserved

1998 was a very exciting year for studies of CPCs, the APC
and the M—A checkpoint. Homologs of scBUBs and
s¢MADs have recently been identified in diverged species
(Table 1). A combination of homology searches, powerful
yeast genetics and mammalian cytology are beginning to
uncover functional relationships. ZBUB! mutations have
recently been shown to be associated with aneuploidy in
two colorectal cancer cell lines, indicating that faithful
checkpoint protein function may be required for genome
stability in humans [63°]. Several BUB and MAD proteins
from diverse species have been shown to be required for
M—A cell cycle arrest when spindles or kinetochores are
disrupted [63°,64,65°—67°,68-70} and there is interdepen-
dence between the BUB and MAD family of proteins
[64,71]. For example, phosphorylation of MADI1 depends
on BUBI1, BUB3 and MAD2, but not BUB2 and MAD3.
T'here is evidence that interdependence is caused by at least
one linear relationship and/or interactions within complexes
(see below). BUB1 and BUB3 act upstrcam of MAD1 and
MAD?2Z, and MAD3 and BUB2 act downstream of the above.

Checkpoint proteins can form complexes

BUB1 has three conserved domains: an amino-terminal
M’I-binding domain, a carboxy-terminal serine/threonine
kinase domain and a BUB3-binding domain [63%,67°].
hBUB3 was recently cloned and shown to interact with
mBUBI and be required for localization of hBUBR1 to
unattached kinetochores [67°]. hABUBR1 and hMAD3 have
been proposed to be the same protein [67°]. Chan ¢ 4.
[72°] recently demonstrated that hCENP-E interacts with
hBUBRI1 and localizes to kinetochores in mammalian cells.
These studies hint that motor/kinase protein complexes
are resident at the M'I'-kinetochore interface and that
these complexes may sense and signal attachment/tension,
possibly via a kinase phosphorylation cascade.

Recent studies demonstrate conclusively that MAD pro-
teins form CPCs that include at least one regulator of the
APC (Figure 1). scMAD1, 2 and 3 form a ternary com-
plex that binds the cell-cycle regulator Cdce20p [73°°]
which is required to activate APC-mediated proteolysis
[74,75]. 'The scMAD protein complex may prevent the
M—A transition by inhibiting Cdc20p function until all
the kinetochores are attached to MTs. Similar interac-
tions have been described in 8. pombe [76°] and
mammalian cells [77°,78%°] and a further link between
CPCs and cell-cycle regulation was established with the
description of checkpoint protein/APC interactions
[74,77°,79%]. Fizzy (dFZY) and fizzy-related (dFZR) in D.
melanogaster and xFZY in X. Jaevis are members of the
same family as Cde20p, Slplp and p55CDC, and are
involved in cell-cycle regulation [80-82]. Regulators of
dF7Y, dFZR and xFZY have vet to be identified and it
is unclear whether they function at kinctochores (Table
1). Numerous WD (tryptophan/aspartic acid) repeats
may facilitate CPC formation [67%,75,81-83].
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Further studies are required to understand exactly
how checkpoint proteins regulate the APC.
Hyperphosphorylation of MADI1 is important, although
not essential, for checkpoint function, and phosphorylation
has been implicated in the regulation of the APC [74]. The
precise role(s) of phosphorylation in checkpoint signaling
needs to be determined. Nonetheless, the studies
described above provide evidence for a signal transduction
mechanism that links CPCs and the APC.

Checkpoint proteins associate with unattached
kinetochores and disassociate from

attached kinetochores

xMAD1 and xMAD?2 interact in X. /laevis egg extracts and
localize to unattached kinetochores [85%]. xMAD2 localiza-
tion is dependent upon xMAD1 but not vice versa,
implying that xMAD1 targets xMAD?2 to unattached kine-
tochores. mBUB1, hBUB3, xMAD1, xMAD2, hMAD?Z2 and
p55CDC  associate with unattached kinetochores at
prophase and promctaphase and with kinetochores that are
late to congress at metaphase [66°,67°,77°,78%%.85°.86°].
Generally, the signal diminishes at kinetochores when all
the chromosomes have congressed at metaphase (Figure 1).
MAD?Z localizes to all the kinetochores in cells with depoly-
merized M'Ts and at the unattached kinetochore on
mono-orientated chromosomes. A monoclonal antibody
(3F3/2) that recognizes phosphoepitopes also localizes to
unattached kinetochores and exhibits similar differential
localization as MAD2 on mono-orientated chromosomes
[60,84*,87]. Phosphorylation of the 3F3/2 epitope requires
ERK (extracellular signal-regulated kinase) which exhibits
similar localization with 3IF3/2 in PtK1 cells [88].

In vitro and in vivo micromanipulation and 3F3/2 phospho-
cpitope-tag experiments demonstrate that the checkpoint is
sensitive to differential tension between kinetochore pairs
and that phosphorylation of kinetochore proteins is associat-
ed with unattached kinetochores [84°,89]. Cells do not
proceed into anaphase until tension is generated across all
the centromeres, suggesting that localization of kinetochore-
checkpoint proteins may be tension sensitive; however, cells
may use more than one mechanism to monitor chromosome
congression [61]. Recently, Waters ¢7 /. [90°], showed that
although MADZ2 normally localizes to unattached kineto-
chores it does not localize to attached kincetochores that have
tension reduced by taxol treatment. Therefore, the associa-
tion of at least onc checkpoint protein appears to be
insensitive to tension. It is likely that there will be as vet
unidentified kinases involved in these signaling processes.
Recently, Biggins ez @/ [91] identified the Iplip kinase
which phosphorylates Nde10p, a structural protein in S. cere-
visiae, and appears to be involved in regulating M'[’
attachment. Further studies are required to determine the
precise signaling processes involved between MT attach-
ment/tension and the checkpoint. However, it is plausible to
suggest that some checkpoint proteins monitor
tensionfattachment (e.g. BUB1 and BUB3) and other check-
point proteins (¢.g. MADs) transduce the ‘unattached



212 Chromosomes and expression mechanism

kinetochore’ signal to the APC and cell cycle apparatus.
Perhaps localization of BUBR1/MAD?3 to unattached kine-
tochores via interactions with BUB3 provides a link
between the attachment/tension-sensing complexes and the
signal transduction complexes. Conservation of function, as
demonstrated by Nicklas ez @/. [84*] for one kinetochore
kinase, may help identify proteins involved in these signal-
ing processes.

Some CPC/APC interactions occur at kinetochores
Several recent studies describe CPC formation and how
CPC/APC interactions might occur [71,77°,78°%*,85%,86°,92].
T'he most favored model is on¢ in which CPCs are assem-
bled at unattached kinctochores and, once assembled,
CPCs inhibit the APC, remote from kinetochores.
However, "Isg24, a component of the murine APC, was
recently localized to kinetochores in mammalian cells
[93°°]. "Isg24 is related to components of the APC in other
organisms including 8. cerevisiae [94], S. pombe [95], A. nidu-
Jans [96] and X. laevis [96]. This raises the possibility that
1524 homologs and perhaps other APC components are
localized to kinetochores (FFigure 1). Indeed, microinjection
of antibodies for Cdce27p, a component of the §. cerevisiae
APC, localize to kinetochores in PtK1 cells and induce
metaphase arrest (G Gorbsky, personal communication).

Exactly how a single unattached kinetochore can delay
anaphase onset remains unclear. It is unlikely that sim-
ple sequestration of APC components to unattached
kinetochores is the sole mechanism for M—A inhibition
because a single unattached kinetochore would have to
recruit all of the APC components in the cell. Further,
live studies of fused PtK1 cells with four sets of MTs
(two spindle pairs) in a common cytoplasm demonstrate
that the inhibitory signal does not diffuse between
attached and unattached spindle pairs [97]. Localization
and immunoprecipitation studies with other CPC and
APC components are required to address what CPC/APC
interactions occur and where. These questions will sure-
ly be an exciting focus in the near future.

Once the criteria for progression from metaphase to
anaphase are fulfilled, the activated APC targets down-
stream proteins involved in maintaining sister chromatid
cohesion ("lable 1). Pdslp in 8. cerevisiae and Cut2p in
§. pombe are targets for APC-mediated ubiquitination and
proteolysis [98,99]. Destruction of these proteins leads to
rapid resolution of sister chromatid cohesion and separation
of chromatids to opposite poles driven by kinetochore/M'T-
bound motors (reviewed in [38°°]). Finally, centromeres
may act as a ‘processing site’ for other cell-cycle functions,
such as the delivery of INCENPs to the cleavage midzone
at anaphase {100]. And so, even towards the end of mitosis,
there is still plenty of action at the kinetochore.

Conclusions
Centromere/kinetochore assembly, chromosome move-
ment and coordination with the cell cycle are complex and

dynamic processes. Research published in the past vear
demonstrates that there are many transient protein—cen-
tromere interactions and that protein networks accomplish
different centromere functions. Defining centromere iden-
tity and architecture can be thought of as a two-step
process. First, the site of kinetochore formation through
divisions must be ‘marked’ and second, the primary kine-
tochore layer must be built on top of that mark. Putative
marking and structural proteins do exist in some organisms
and tools now exist to test various models. The further
identification and characterization of centromere-defining
proteins will advance our understanding of this basic and
ancient biological activity. 'T’he proteins involved in the
outer kinetochore layer, M'T capture and chromosome con-
gression are highly conserved across diverse species, in
comparison to centromere structural proteins. We now have
identified many of the motor proteins, and proteins that
scrve as a ‘scaffold’ that links the motors to the kinetochore.
Finally, a number of checkpoint proteins have been identi-
fied across diverse species and their functions are
cvolutionary conserved. Kinetochores appear to be central
for the assembly of CPCs. Many checkpoint proteins have
been shown to associate with unattached kinetochores and
they disassociate once the kinetochores become attached to
MTs. A plausible route for signaling M'T'-kinetochore
attachment to the cell cycle has been identified with the
association of checkpoint proteins and proteins involved in
APC regulation. Still, we are only beginning to scratch the
surface. Novel genetic screens targeted at identifying trans-
mission-defective mutants and utilization of expanding
genome databascs should help fill in the gaps, and provide
a clearer, more complete picture of centromere—kineto-
chore protein structure and regulation.

Note added in proof

‘T'he identification and characterization of dBUB1 and
dBUB3 have recently been described by Basu e a/. [126].
The localization of dBUB3 is affected when the gene encod-
ing dBUB1 1s disrupted. This dependency is similar to that
described in human cells (see main text and [{67°]) which
further confirms the conservation of function observations.
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